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Abstract
We present simulations of the aging of a quasi-hard-sphere glass, with Newtonian and
Brownian microscopic dynamics. The system is equilibrated at the desired density (above the
glass transition in hard spheres) with short-range attractions, which are removed at t = 0. The
structural part of the decay of the density correlation function can be time rescaled to collapse
onto a master function independent of the waiting time, tw, and the timescale follows a power
law with tw, with exponent z ∼ 0.89; the non-ergodicity parameter is larger than that of the
glass transition point (the localization length is smaller) and oscillates in harmony with Sq . The
aging with both microscopic dynamics is identical, except for a scale factor from the age in
Newtonian to the age in Brownian dynamics. This factor is approximately the same as that
which scales the α-decay of the correlation function in fluids close to the glass transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When a fluid is quenched below its glass transition temperature
it forms an amorphous solid and exhibits aging, i.e. the
dynamics slows down with the time after the quench [1]. This
process typically competes with crystallization, which is the
equilibrium phase with lowest free energy for simple systems
in the region where the glass transition takes place [2]. The
slowing down of the dynamics can be noted by the increase
of the viscosity or the timescale for structural relaxation, or
the decrease of the self-diffusion coefficient. This general
scenario is found in both atomic or molecular liquids and
colloidal fluids. The latter are particularly interesting since
optical techniques can be used to study their dynamics [3].
In addition to the different interactions, the main difference
between atomic and colloidal systems relies on the microscopic
dynamics, Newtonian in the former, and Brownian in the latter.
It was shown by Gleim et al [4], however, that the structural
relaxation of equilibrium fluids close to the glass transition
is identical for both microscopic dynamics. Other structural
and dynamical properties are similarly left unchanged by the
change of the microscopic dynamics [5, 6].

Using computer simulations, the aging of the mixture of
Lennard-Jones (LJ) particles introduced by Kob and coworkers
was studied with microscopic Newtonian dynamics [7–9]. This
system exhibits a significant slowing down at finite tempera-
ture, and the analysis with mode coupling theory (MCT) [11]

provided a glass transition at a given temperature Tc [10]. Upon
quenching the system below Tc from high temperature the
structure evolves very little, whereas the dynamics slows down
dramatically. In short, it was found that the density correlation
function at different times after the quench, termed ‘waiting
time’, can be collapsed onto a master curve for the structural
decay (a stretched exponential), and the timescale for structural
relaxation increases with the waiting time following a power
law with an exponent slightly smaller than one [7]. Quenches
to very low temperatures showed that the relaxation is largely
dominated by collective catastrophic events involving a large
number of particles [9].

On the other hand, experiments in dense hard colloids have
shown a glass transition around a volume fraction φ ≈ 0.57
(also obtained via an MCT analysis) [12, 13]. Experimental
aging studies in these systems have resulted in moderate
agreement with the simulations. Compressed instead of
stretched exponential decays were found in the correlation
function and the timescale for structural relaxation increased
linearly with waiting time [14]. Nevertheless, the glass form
factor oscillates in harmony with the structure factor in both
experiments and simulations, and is larger than that at the
glass point, implying a shorter localization length [15]. Recent
results, in contrast, report equilibrated samples of hard colloids
above the extrapolated glass transition volume fraction [16],
suggesting that the glass transition occurs at a significantly
larger density [17].
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In this work we study the aging of a quasi-hard-
sphere glass by means of simulations, and the effects of
using different microscopic dynamics. The system has been
studied previously in the fluid regime, and its analysis within
MCT yielded a glass transition at a volume fraction φ =
0.594 [5, 18]. Different from the LJ mixture, the only control
parameter in this system is the density, reported as a volume
fraction, φ. Instead of compressing the system instantaneously,
our system is prepared at the desired density (φ = 0.60) in the
fluid phase, introducing attractions, and at t = 0 attractions are
removed, following a procedure first used by Foffi et al [19].
The results show that the aging in this system is qualitatively
similar to that of the LJ mixture, and the different microscopic
dynamics introduce only a scaling factor for the waiting time.
Interestingly, although the relation between the timescale for
structural relaxation and waiting time is not linear, the factor to
scale waiting time is similar to that which scales the α-decay
of the density correlation function in equilibrium.

2. Simulation details

Computer simulations with microscopic Newtonian and
Brownian dynamics (in the canonical ensemble) are run in
a polydisperse system of quasi-hard-spheres. The core–core
repulsion between particles is designed to be a continuous
approximation to the hard-sphere potential:

Vc(r) = ε

(
r

2a12

)−36

, (1)

where 2a12 is the center-to-center distance, a12 = (a1 +
a2)/2, with a1 and a2 the radii of the particles. To avoid
crystallization, the radii of the particles in the simulation are
distributed according to a flat distribution centered around
a = 1 and a half-width of δ = 0.1a. The volume fraction
is thus φ = (4π/3)a3[1 + δ2]�, with � the number density. In
this work, we set ε = kBT , the thermal energy. It has been
shown previously that this system behaves effectively as hard
spheres (HS), given the high value of the exponent [20].

Both Newtonian and Brownian dynamics simulations
were performed to analyze the effect of the microscopic
dynamics on the aging of the glass. Newtonian dynamics (ND)
was simulated by integrating Newton’s equations of motion
in the canonical ensemble at constant volume. In Brownian
dynamics (BD), or more precisely, strongly damped Newtonian
dynamics (dND), each particle experiences a Gaussian
distributed white noise force with zero mean, �η(t), and a
damping force proportional to the velocity, γ �̇r , apart from the
deterministic forces from the interactions. Hence the equation
of motion for particle j is

m �̈r j =
∑

i

�Fi j − γ �̇r j + �η j (t). (2)

The stochastic and friction forces are linked by the fluctuation-
dissipation theorem, 〈�ηi (t)�η j (t ′)〉 = 6kBT γ δ(t − t ′)δi j . The
value of γ was set to 50 in units of kBT , a and m (thermal
energy, mean radius and particle mass, respectively). This
large value of γ ensures that the particle momentum relaxes

Figure 1. Schematic phase diagram showing the path followed to
produce the HS glass. The light red line marks the liquid–gas
separation and the broken black line the crystallization
boundary—note that crystallization is inhibited in our system. The
continuous blue line shows the fluid to glass transition.

in a timescale (m/γ ) shorter than the mean collision time
(still, a ballistic regime can be identified at very short times).
These equations were solved using a Heun algorithm [21].
Both microscopic dynamics (ND and dND) give the same
structural relaxation in equilibrium (fluid) states close to the
glass transition, as shown previously [4, 5]. In our particular
system, a scale factor of 20.5 is needed to collapse the
structural decay of the correlation function in dND onto that
obtained with ND.

In HS there is only one control parameter, namely
the number density �, or a coupling between density and
temperature in the power potential 
 = �a3(ε/kBT )1/12 [20];
because ε = kBT , the only variations in 
 are due to variations
in the density. An HS glass can thus be reached by increasing
the density beyond the transition point. However, in order to
prepare a glass, a rapid or instantaneous compression from a
liquid state creates local stresses and inhomogeneities that can
drive the evolution of the system at short times and induce
artifacts. We propose here to follow a route making use of
short-range attractions. In figure 1 we present the qualitative
phase diagram and the liquid–glass transition (continuous dark
blue line) in a system with short-range attractions. Note the
fluid pocket at high density and moderate attractions between
two glasses that can be reached by increasing or decreasing the
attraction strength. Foffi et al [19] studied the aging of both
glasses by an instantaneous quenching or heating. Following
a similar argument, we propose here to prepare a high density
liquid in this pocket and remove the attractions instantaneously,
resulting in the route marked by the thick arrow down to the
HS system. If temperature is used as the control parameter,
instead of the attraction strength, our route implies raising the
temperature to infinity.

In the simulations, the Asakura–Oosawa depletion
potential [22] is used with an attraction range ξ = 0.10a and
the soft core given above [23]. A system with N = 1000
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Figure 2. Incoherent density correlation functions (inset) at qa = 3.8
(first peak in Sq) and with time rescaled to show the collapse of the
α-decay onto a master function (main panels), at different waiting
times, as labeled. The thin line in the insets represent the correlation
function of the liquid state with attractions. The upper panels
correspond to ND, and the lower ones to dND. Note that colors
correspond to different waiting times in ND and dND.

particles is equilibrated at a volume fraction φ = 0.60 and with
an attraction strength of 4kBT , presented schematically by the
green circle in figure 1. At t = 0 attractions are instantaneously
removed and the system is allowed to evolve with only core–
core repulsions at constant volume fraction φ = 0.60. Both
microscopic dynamics are used; 100 independent systems are
aged with ND and 50 with dND. All dynamical quantities
depend on the waiting time, tw, i.e. the time elapsed after
the removal of the attractions, and t ′ = t − tw; for instance
the intermediate scattering function, or density correlation
function is �q(tw, t ′) [9].

3. Results

The system at φ = 0.60 with attractions is in the fluid phase
because the particles attract each other forming reversible
bonds and creating voids that allow the motion of particles
and therefore the fluidization of the system. At t = 0, the
attractions are instantaneously removed and the voids suddenly
become crowded. The system starts to age. This aging has
only minor effects in the structure of the system, whereas the
dynamics is evolving dramatically. The structure factor, Sq ,
at short waiting time shows the disappearance of the bonds,

Figure 3. Timescale for the structural decay as a function of the
waiting time for both microscopic dynamics (as labeled) used to
scale the correlation functions shown in figure 2.

i.e. the peaks move to smaller wavevectors (larger distances),
the neighbor peak grows and the limit Sq→0 decreases (the
compressibility decreases). For longer times, no more changes
are observed and Sq is constant within the noise level.

The insets to figure 2 show the self-intermediate scattering
functions, �s

q(tw, t ′), at different waiting times with both
microscopic dynamics. The thin line is the correlation function
of the fluid state with attractions, used as the initial state for
the preparation of the glasses. Note that the removal of the
attractions implies the disappearance of (reversible) bonds, and
a concomitant faster relaxation at short times. The aging of
the system is then noticed by a slowing down of the structural
relaxation, which is observed in both microscopic dynamics.
The main panels show that the structural relaxation at different
waiting times can be rescaled in time to collapse onto a
master decay. This waiting time–time superposition, similar
to the time–temperature superposition in equilibrium, has been
observed also in other aging systems [7, 24] and indicates
that the driving mechanism for structural relaxation does not
change, except for the timescale.

The evolution of the timescale for the structural relaxation,
τ , defined as �s

q(tw, τ ) = f s
q /e, with f s

q the height of the
plateau, is presented in figure 3 as a function of waiting time
for both microscopic dynamics. In both cases, τ shows a power
law dependence with tw, and the exponent is the same in ND
and dND z ∼ 0.89. The value of the exponent is, in any case,
close to the value found for the LJ mixture [7], z = 0.88, also a
repulsion driven glass. Because in both microscopic dynamics
the same exponent is found, we can conclude that both of
them result in the same aging velocity, although microscopic
dND causes slower structural relaxation in equilibrium (as
mentioned above) and out of equilibrium (see figure 2).

To further explore the similarities in the aging between ND
and dND, the structural decays of the correlation functions are
directly compared in figure 4. For the same waiting time, an
appropriate rescaling of t ′ leads to a collapse of the plateau
region and final decay of the correlation function with ND
onto dND. As in equilibrium, this collapse indicates that the
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Figure 4. Incoherent density correlation functions for different
waiting times with ND and dND microscopic dynamics, as labeled.
Time has been scaled to match the α-decay of both dynamics with
the same waiting time.

structural relaxation is led by the same mechanisms in both
microscopic dynamics. Moreover, the collapse of the structural
decay of the correlation function indicates that the master
functions in figure 2 are the same.

Since the same structural decays are obtained for different
waiting times with both microscopic dynamics, we can write
down:

�dND
α (tdND

w , t ′dND) = �ND
α (k1tND

w , k2t ′ND) (3)

where the subscript α refers to the structural part of the decay.
Making use of the power law relation between τ and tw with
exponent z = 0.89, the constants k1 and k2 must fulfil kz

1k2 =
1.5, the factor needed to scale functions in figure 4. If we
take the value k2 = 20.5 from the equilibrium states close to
the glass transition, one obtains k1 = 0.053 ≈ 1/19. This
implies that tdND

w = 0.053tND
w , i.e. a system of a given age

running with dND corresponds to a (19 times) younger system
running with ND (judging from their structural relaxations).
Interestingly, the intuitive relation k1 = k−1

2 , implying that
aging and structural relaxation are slowed down in the same
way, is obtained approximately although simple aging z = 1 is
not taking place.

We study now in more detail the properties of the HS glass.
The non-ergodicity parameter, fq , can be obtained from the
height of the plateau developed in the intermediate scattering
function. As shown in figure 2, fq is independent of the
waiting time, but it is more evident for large tw; we have thus
obtained fq and f s

q from the largest tw. Both the self- and
coherent-non-ergodicity parameters are presented in figure 5 as
a function of the wavevector, together with the structure factor
Sq and with the critical non-ergodicity parameters obtained
from simulations of equilibrium states close to the glass
point [5, 18]. Note that fq in the glass oscillates in phase
with Sq and is larger than the critical value, as expected for a
system inside the glassy region—except for low wavevectors,
where interdiffusion has dramatic effects [18]. Accordingly,
the self-non-ergodicity parameter is larger in the glass than the

Figure 5. Non-ergodicity parameter (coherent, fq , and self, f s
q ,

parts) and critical parameters obtained from equilibrium simulations
at φ = 0.58. The scaled structure factor is also presented showing
the oscillations in phase with fq and f c

q .

Figure 6. α-timescale for tw = 4096 as a function of the wavevector
for the coherent and incoherent correlation functions, black line and
circles, respectively. The straight line shows the q−2 behavior. The
thin line represents the scaled structure factor.

critical value, implying shorter localization length, i.e. there is
less space left and the motion of the particles is more hindered.
At large wavevectors, the coherent- and self-non-ergodicity
parameters coincide.

The wavevector dependence of the correlation functions
also provide information about the driving mechanism of
the transition by means of the dependence of the timescale.
In figure 6 the timescale for the coherent and incoherent
correlation functions obtained at tw = 4096 with ND are
presented, with the structure factor. For this waiting time
the correlation function shows structural slowing down, but
decays almost completely in the time window studied here,
allowing the measurement of τq ; qualitatively similar results
are obtained, though, for other waiting times. The figure
shows that τq oscillates in harmony with Sq and the slowest
mode is connected with the neighboring peak in Sq . On the
other hand, the timescale of the incoherent correlation function
follows a power law with the wavevector, with exponent −2,
also followed by the coherent timescale at large wavevectors.
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Figure 7. Distributions of squared displacements at different times and microscopic dynamics, as labeled. The different colors indicate
different waiting times, with the same code as figure 2. Note that both the time and waiting times are different for ND and dND.

This exponent is also found in the α-timescale of HS fluids
close to the glass transition and is connected to the stretching
of the correlation function [25].

Finally, we study the distribution of squared displacements
in the system, trying to identify dynamical heterogeneities.
The distributions shown in every panel of figure 7 are
calculated for a constant time after different waiting times,
using a logarithmically increasing binning, P(log δr 2)—both
microscopic dynamics are compared. It is shown there that
as the waiting time increases two populations of particles can
be identified, according to their mobility. Many particles have
moved only a fraction of the diameter, whereas fewer and
fewer particles as tw increases have moved a distance of several
diameters. The evolution of the system occurs via a slow
displacement of the peak of the slower particles and an increase
in the peak of the faster ones. Snapshots of these faster particles
show them grouped in elongated clusters that grow with time,
resembling the string-like motions observed in dense fluids
close to the glass transition. These features can be noticed
in both microscopic dynamics—note, however, that the times
cannot be compared directly.

Kob and Barrat [9] reported the presence of ‘catastrophic
events’ in the aging of their LJ mixture at low temperatures,
in which a substantial portion of the particles (around 10%)
move collectively a fraction of the particle diameter. These

catastrophic events are not connected with the right peak in
the distribution of displacements, which evolves gradually, and
have not been noticed in this system. Probably, these can
appear at even higher density, where local fluctuations of the
stress are more important and release through avalanches.

4. Discussion and conclusions

The temporal evolution of an HS system with a density
beyond the MCT-extrapolated glass point has been followed.
The findings presented here are similar to the aging of
other structural glasses studied by computer simulations; the
structural part of the decay of the density correlation function
can be time rescaled to collapse onto a master function
independent of the waiting time, and the timescale follows
a power law with tw, with exponent z ∼ 0.89. The non-
ergodicity parameter is larger than that of the glass transition
point (the localization length is smaller) and oscillates in phase
with Sq ; also the timescale oscillates in phase with Sq and the
slowest mode accessed in the simulations is connected with
the neighbor peak. Because the driving mechanism for the
transition is the same as in the LJ mixture, similar results are
obtained here.

There has been, however, no definitive proof showing that
the system at φ = 0.60 is beyond the glass transition and
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indeed aging. If the transition point is wrongly estimated by
our previous equilibrium analysis [5, 18] as discussed in recent
works [16, 17], the system could be ‘equilibrating’ instead
of ‘aging’. The simulations presented here, however, do not
show any sign of a system reaching equilibrium. On the other
hand, the evolution of the non-ergodicity parameter, which
is constant in the fluid phase up to the MCT-estimated glass
point [5], but increases above it, requires a different theoretical
framework from the ideal MCT if the system is to remain in
the fluid phase.

Our main result, in any case, concerns the evolution of
the system with different microscopic dynamics. It was shown
that the structural part of the decay of the density correlation
function can be scaled to collapse the dND and ND data
onto a single curve. The scaling factor is independent of tw

(and different from 1). Making use of the scaling with the
waiting time and the scaling factor between ND and dND in
equilibrium, we determine the factor to scale the age in ND
with that of dND. Interestingly, this factor is similar to that
needed to scale the dynamics in equilibrium. This result could
be of interest for future studies of glass aging with simulations,
as we have shown and quantified the only effect of using ND
or dND.

Acknowledgments

Financial support is acknowledged from the MEC—project
MAT2009-14234-CO3-02. I thank Francesco Sciortino and
Walter Kob for useful discussions.

References

[1] Angell C A 1995 Science 267 1924
[2] Zaccarelli E, Valeriani C, Sanz E, Poon W C K, Cates M E and

Pusey P N 2009 Phys. Rev. Lett. 103 135704

[3] van Megen W and Underwood S M 1993 Phys. Rev. E 47 248
van Megen W and Underwood S M 1994 Phys. Rev. 49 4206

[4] Gleim T, Kob W and Binder K 1998 Phys. Rev. Lett. 81 4404
[5] Voigtmann Th, Puertas A M and Fuchs M 2004 Phys. Rev. E

70 061506
[6] Foffi G, De Michele C, Sciortino F and Tartaglia P 2005

J. Chem. Phys. 122 224903
[7] Kob W and Barrat J-L 1997 Phys. Rev. Lett. 78 4581
[8] Barrat J-L and Kob W 1999 Europhys. Lett. 46 637
[9] Kob W and Barrat J-L 2000 Eur. Phys. J. B 13 319

[10] Kob W and Andersen J C 1995 Phys. Rev. E 53 4134
Kob W and Andersen J C 1995 Phys. Rev. E 51 4626
Kob W and Andersen J C 1994 Phys. Rev. Lett. 73 1376
For a review see Kob W 1999 J. Phys.: Condens. Matter

11 R85
[11] Götze W 1999 J. Phys.: Condens. Matter 11 A1
[12] Pusey P N and van Megen W 1986 Nature 320 340

Pusey P N and van Megen W 1987 Phys. Rev. Lett. 59 2083
[13] van Megen W, Mortensen T C, Williams S R and Müller J 1998

Phys. Rev. E 58 6073
[14] El Masri D, Pierno M, Berthier L and Cipelletti L 2005

J. Phys.: Condens. Matter 17 S3543
[15] Martinez V A, Bryant G and van Megen W 2008 Phys. Rev.

Lett. 101 135702
[16] Brambilla G, El Masri D, Pierno M, Berthier L, Cipelletti L,

Petekidis G and Schofield A B 2009 Phys. Rev. Lett.
102 085703

[17] Berthier L and Witten T A 2009 Phys. Rev. E 80 021502
[18] Weysser F, Puertas A M, Voigtmann Th and Fuchs M 2010

in preparation
[19] Foffi G, Zaccarelli E, Buldyrev S, Sciortino F and

Tartaglia P 2004 J. Chem. Phys. 120 8824
[20] Lange E, Caballero J B, Puertas A M and Fuchs M 2009 J.

Chem. Phys. 130 174903
[21] Paul W and Yoon D Y 1995 Phys. Rev. E 52 2076
[22] Likos C N 2001 Phys. Rep. 348 267
[23] Puertas A M, Fuchs M and Cates M E 2002 Phys. Rev. Lett.

88 098301
[24] Puertas A M, Fuchs M and Cates M E 2007 Phys. Rev. E

75 031401
[25] Fuchs M and Mayr M R 1999 Phys. Rev. E 60 5742

6

http://dx.doi.org/10.1126/science.267.5206.1924
http://dx.doi.org/10.1103/PhysRevLett.103.135704
http://dx.doi.org/10.1103/PhysRevE.47.248
http://dx.doi.org/10.1103/PhysRevLett.81.4404
http://dx.doi.org/10.1103/PhysRevE.70.061506
http://dx.doi.org/10.1063/1.1924704
http://dx.doi.org/10.1103/PhysRevLett.78.4581
http://dx.doi.org/10.1209/epl/i1999-00313-4
http://dx.doi.org/10.1007/s100510050038
http://dx.doi.org/10.1103/PhysRevE.52.4134
http://dx.doi.org/10.1103/PhysRevE.51.4626
http://dx.doi.org/10.1103/PhysRevLett.73.1376
http://dx.doi.org/10.1088/0953-8984/11/10/003
http://dx.doi.org/10.1088/0953-8984/11/10A/002
http://dx.doi.org/10.1038/320340a0
http://dx.doi.org/10.1103/PhysRevLett.59.2083
http://dx.doi.org/10.1103/PhysRevE.58.6073
http://dx.doi.org/10.1088/0953-8984/17/45/046
http://dx.doi.org/10.1103/PhysRevLett.101.135702
http://dx.doi.org/10.1103/PhysRevLett.102.085703
http://dx.doi.org/10.1103/PhysRevE.80.021502
http://dx.doi.org/10.1063/1.1695326
http://dx.doi.org/10.1063/1.3124182
http://dx.doi.org/10.1103/PhysRevE.52.2076
http://dx.doi.org/10.1016/S0370-1573(00)00141-1
http://dx.doi.org/10.1103/PhysRevLett.88.098301
http://dx.doi.org/10.1103/PhysRevE.75.031401
http://dx.doi.org/10.1103/PhysRevE.60.5742

	1. Introduction
	2. Simulation details
	3. Results
	4. Discussion and conclusions
	Acknowledgments
	References

